首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
大气科学   1篇
地球物理   1篇
地质学   3篇
海洋学   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2006年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 296 毫秒
1
1.
Abstract

Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Soil moisture is the key variable modulating the complex dynamics of the climate-soil-vegetation system and controlling the spatial and temporal patterns of vegetation. In this note the authors' perspective to the field is discussed and some open questions are outlined.  相似文献   
2.
3.
Volcanic terrains such as magmatic arcs are thought to display the most complex surface environments on Earth. Ancient volcaniclastics are notoriously difficult to interpret as they describe the interplay between a single or several volcanoes and the environment. The Early Miocene Tepoztlán Formation at the southern edge of the Transmexican Volcanic Belt belongs to the few remnants of this ancestral magmatic arc, and therefore is thought to represent an example of the initial phase of evolution of the Transmexican Volcanic Belt. Based on geological mapping, detailed logging of lithostratigraphic sections, palaeocurrent data of sedimentary features and anisotropy of magnetic susceptibility, mapping of two‐dimensional panels from outcrop to field scale, and geochronological data in an area of ca 1000 km2, three periods in the evolution of the Tepoztlán Formation were distinguished, which lasted around 4 Myr and are representative of a volcanic cycle (edifice growth phases followed by collapse) in a magmatic arc setting. The volcaniclastic sediments accumulated in proximal to medial distances on partly coalescing aprons, similar to volcanic ring plains, around at least three different stratovolcanoes. These volcanoes resulted from various eruptions separated by repose periods. During the first phase of the evolution of the Tepoztlán Formation (22·8 to 22·2 Ma), deposition was dominated by fluvial sediments in a braided river setting. Pyroclastic material from small, andesitic–dacitic composite volcanoes in the near vicinity was mostly eroded and reworked by fluvial processes, resulting in sediments ranging from cross‐bedded sand to an aggradational series of river gravels. The second phase (22·2 to 21·3 Ma) was characterized by periods of strong volcanic activity, resulting in voluminous accumulations of lava and tuff, which temporarily overloaded and buried the original fluvial system with its detritus. Continuous build‐up of at least three major volcanic centres further accentuated the topography and, in the third phase (21·3 to 18·8 Ma), mass flow processes, represented by an increase of debris flow deposits, became dominant, marking a period of edifice destruction and flank failures.  相似文献   
4.
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号